COMMENT FAIRE LE DIAGNOSTIC DE PNEUMONIE ?

Fouad Madhi
Olivier Romain
Raphael 22 mois, vient pour fièvre à 40° depuis moins de 12 heures. Il tousse gras ; la fréquence respiratoire est à 36 et vous avez un doute sur l’existence de crépitants à droite. Il est en bon état général. Que faites-vous ?

- Je demande une radio de thorax
- Je fais une CRP
- Je le mets sous antibiotiques sans radio
- Je demande une échographie pulmonaire
Le médecin consulté avait demandé une CRP qui est à 30 mg/l et une radio de thorax, normale.

Ces résultats permettent d’éliminer une pneumonie bactérienne, je ne prescris pas d’antibiotique.

Ce n’est pas suffisant, je prescris un antibiotique.

Ce n’est pas suffisant, je ne prescris pas d’antibiotique et je le revois 24 à 48 heures après.

Je demande une échographie pulmonaire.
Comment s’y retrouver ?

2005
Le recours à la radio thoracique initiale est recommandé pour confirmer le diagnostic

Accord professionnel

2011
Routine chest radiographs are not necessary for the confirmation of suspected CAP in patient
Well enough to be treated in the outpatient … CRP, PCT not recommended…

Strong recommandation; high quality

2015
Prise en charge CRP (microméthode) guidée
Safety of reduced antibiotic prescribing for self limiting respiratory tract infections in primary care: cohort study using electronic health records

Martin C Gulliford,¹ Michael V Moore,² Paul Little,² Alastair D Hay,³ Robin Fox,⁴ A Toby Prevost,¹ Dorota Juszczyk,¹ Judith Charlton,¹ Mark Ashworth¹

Cite this as: BMJ 2016;354:i3410
http://dx.doi.org/10.1136/bmj.i3410

Accepted: 07 June 2016
Comparaison de l’incidence des complications en fonction du profil de prescription

Table 2 | Distribution of general practices and person years follow-up for registered patients from 2005 to 2014 for 610 general practices contributing to the UK Clinical Practice Research Datalink

<table>
<thead>
<tr>
<th>Variables</th>
<th>Fourth of proportion of RTI consultations with antibiotics prescribed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High ≥58%</td>
</tr>
<tr>
<td>No of general practices</td>
<td>152</td>
</tr>
<tr>
<td>No of person years from registered patients</td>
<td>10 573 885</td>
</tr>
<tr>
<td>Median (95% range) proportion of RTI consultations with antibiotics prescribed</td>
<td>65 (58-79)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Infective complications*</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia</td>
<td>119.2 (117.0 to 121.3)</td>
</tr>
<tr>
<td>Peritonsillar abscess</td>
<td>12.9 (12.8 to 13.0)</td>
</tr>
<tr>
<td>Mastoiditis</td>
<td>3.48 (3.37 to 3.60)</td>
</tr>
<tr>
<td>Empyema</td>
<td>3.64 (3.27 to 4.01)</td>
</tr>
<tr>
<td>Bacterial meningitis</td>
<td>2.19 (1.90 to 2.47)</td>
</tr>
<tr>
<td>Intracranial abscess</td>
<td>0.37 (0.25 to 0.48)</td>
</tr>
<tr>
<td>Lemierre's syndrome</td>
<td>4 cases</td>
</tr>
</tbody>
</table>

*Infective complications include pneumonia, peritonsillar abscess, mastoiditis, empyema, bacterial meningitis, intracranial abscess, and Lemierre's syndrome.
Echographie pulmonaire pour le diagnostic de pneumonie
Très nombreuses publications ces dernières années, dont plusieurs récentes dans des journaux de Rang A

International evidence-based recommendations for point-of-care lung ultrasound

Lung Ultrasound for the Diagnosis of Pneumonia in Children: A Meta-analysis

Maria A. Pereda, Miguel A. Chavez, Catherine C. Hooper-Miele, Robert H. Gilman, Mark C. Steinhoff, Laura E. Ellington, Margaret Gross, Carrie Price, James M. Tielsch, William Checkley

Feasibility and Safety of Substituting Lung Ultrasonography for Chest Radiography When Diagnosing Pneumonia in Children: A Randomized Controlled Trial

Brittany Pandue Jones, MD; Ee Tein Tay, MD; Inna Elkashtawi, DO; Jennifer E. Sanders, MD; Audrey Z. Raul, MD, PhD; Bret P. Nelson, MD; Louis A. Spina, MD; and James W. Tsung, MD, MPH

Lung Ultrasonography: A Viable Alternative to Chest Radiography in Children with Suspected Pneumonia?

Lillian Ambroggio, PhD, MPH; Heidi Sucharew, PhD; Mansh S. Rattan, MD; Sara M. O'Hara, MD; Diane S. Babcock, MD; Carlin Clohessy, BA; Mark C. Steinhoff, MD; Maurizio Maciasco, MD, DrHc; Semir S. Shah, MD, MSC; and Brian D. Coley, MD
Une séméiologie échographique simple et indépendante de l’anatomie

- Repérer les côtes
- Repérer la ligne pleurale (et ses anomalies éventuelles)
- Connaître l’aspect normal
- Reconnaître les images « interstitielles »
- Reconnaître les aspects de « consolidation »
Poumon normal (coupe horizontale)
Images « interstitielles ». Lignes B« queues de comètes »

Image de Ph Durand.
Images de “Consolidation”

Lung Ultrasonography: A Viable Alternative to Chest Radiography in Children with Suspected Pneumonia?

VPN similaire pour LUS et CRX (86/85%)

Ambroggio L J Pediatr sep 2016

Figure 2. Free-marginal multitater κ statistic (and 95% CI) for each binary imaging finding and for each type of imaging modality, LUS and CXR.
Méta-analyse

FIGURE 3
Summary receiver operating characteristic curve for the use of LUS for the diagnosis of childhood pneumonia. Values for sensitivity and (1-specificity) for each study are represented with a square; 95% CIs for sensitivity and (1-specificity) are shown with vertical and horizontal lines, respectively.

Pereda MA Pediatrics 2015
Objectif principal: diminuer le nombre de radiographies
Main Outcomes

We found a 38.8% (95% CI, 30.0%-48.9%) reduction in CXR use in the investigational arm compared with no reduction (95% CI, 0.0%-3.6%) in the control arm. The

TABLE 2 Secondary Outcomes

<table>
<thead>
<tr>
<th>Secondary Outcome Measure</th>
<th>Investigational Group (n = 103)</th>
<th>Control Group (n = 88)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Missed pneumonia</td>
<td>0.0 (0.0-2.9)</td>
<td>0.0 (0.0-3.0)</td>
</tr>
<tr>
<td>Unscheduled health-care visits</td>
<td>8.7 (3.3-14.1)</td>
<td>11.4 (4.8-18.0)</td>
</tr>
<tr>
<td>Antibiotic use at index ED visit</td>
<td>37.9 (28.5-47.2)</td>
<td>27.3 (17.9-36.6)</td>
</tr>
<tr>
<td>LUS or CXR confirmed pneumonia</td>
<td>28.2 (20.0-36.9)</td>
<td>18.1 (10.1-26.1)</td>
</tr>
<tr>
<td>CXR positive for pneumonia</td>
<td>13.6 (6.9-20.2)</td>
<td>13.6 (6.4-20.8)</td>
</tr>
<tr>
<td>LUS positive for pneumonia (≤ 1 cm)</td>
<td>14.6 (7.8-21.4)</td>
<td>4.5 (0.2-8.8)</td>
</tr>
</tbody>
</table>
Lung ultrasonographic images.

A. Normal lung (A-lines).

B. Focal pneumonia, radiographically apparent (≥ 1 cm lung consolidation with air bronchograms).

C. Focal pneumonia, radiographically occult (< 1 cm lung consolidation with air bronchograms).

D-E. B-lines, confluent B-lines, subpleural consolidation more commonly associated with viral pneumonia or bronchiolitis; note subpleural consolidations (< 0.5 cm) without sonographic air bronchograms visible.

F. Pleural effusion (anechoic space between lung and chest wall or diaphragm).
Lung ultrasound in the diagnosis of pneumonia in children: proposal for a new diagnostic algorithm

Giulio Iorio¹, Maria Capasso², Giuseppe De Luca¹, Salvatore Prisco¹, Carlo Mancusi¹, Bruno Laganà¹ and Vincenzo Comune¹

Figure 4 New diagnostic imaging algorithm for diagnosis of pneumonia. #Nil or mild increase in effort to breathe, temperature <38.5 C, respiratory rate <50 breaths/min, mild recession or breathlessness, taking full feeds, no vomiting, oxygen saturation ≥95% in room air. ## Temperature >38.58 C, respiratory rate >70 breaths/min, moderate to severe recession, nasal flaring, cyanosis, intermittent apnoea, grunting respiration, not feeding, tachycardia, capillary refill time >2 s, oxygen saturation ≤95% in room air. * If conditions are good after 24–48 h the lung ultrasound can also be repeated or improvement after therapy can be checked. ** In all cases. *** In cases provided for by guidelines. CR, Chest Rx; LUS, Lung Ultrasound.
Take-home messages

• Echographie pulmonaire plus que prometteuse :
 – Simple (pas besoin de connaître l’anatomie…séméiologie simple)
 – Formation relativement rapide
 – Sensible, spécifique
 – Au lit du malade
 – Moins de variation inter et intra-observateurs

• Non irradiante

• Appareil peu couteux

• A intégrer à la clinique et à la CRP (ou PCT)

• Nouveaux algorithmes à inventer
Où se former ?

GFRUP
Initiation à l'échographie aux urgences pédiatriques, 9 mars 2017 - Paris
(inscription prochainement)
L’échographie pulmonaire en néonatologie: une pratique quotidienne

• Peut-elle distinguer une DRT d’une MMH ?
• Peut-elle éviter une radiographie ?
• Peut-elle diagnostiquer un pneumothorax ?
• Peut-elle diagnostiquer une pneumonie ?
Monitorages non invasifs en réanimation néonatale

D. De Luca, O. Romain, et al Journal de Pédiatrie et de Puériculture, Volume 28, Issue 6, 2015, 276–300
Poumon normal (coupe horizontale)

Visualisation de la ligne pleurale sur une distance plus importante, sans être gêné par les cônes d’ombres. La ligne pleurale est régulière et bien définie. Les lignes A sont des artéfacts.
Tachypnée transitoire du nouveau-né

Bases du poumon: blanches, compactes
Sommets: aspect normal ou quasi normal

Maladie Membranes Hyalines (coupe verticale)

Poumon: complètement blanc, sans zone saine visible
Ligne pleurale: épaissie, irrégulière et mal limitée
Lung Ultrasound Score « LUS »
utilisé en routine en réanimation à A.Béclère

R. Brat et al. Lung ultrasound score to evaluate oxygenation and surfactant need in neonates treated with continuous positive airway pressure. JAMA Pediatr, 169 (2015)
Lung point (downward pointing vertical arrow) is the transition from the B-lines area (left side) to a hypoechoic area with horizontal reverberations of the pleura.

Lung ultrasound findings of pneumonia in a neonate

(gestational age, 38 wk; birth weight, 4,000 g) signs of respiratory distress and a 3-d history of fever. Dense moist rales on chest auscultation, Lung ultrasound: large areas of lung consolidation: irregular margins and heterogeneous echogenicity.